Q1026 (Q1026): Difference between revisions
Jump to navigation
Jump to search
Changed claim: topic-id (P12): B.4 |
Changed claim: relevant answers (P14): 3083261 |
||
(3 intermediate revisions by 2 users not shown) | |||
Property / math-stackexchange-category | |||
Property / math-stackexchange-category: combinatorics / rank | |||
Normal rank | |||
Property / math-stackexchange-category | |||
Property / math-stackexchange-category: number-theory / rank | |||
Normal rank | |||
Property / math-stackexchange-category | |||
Property / math-stackexchange-category: summation / rank | |||
Normal rank | |||
Property / math-stackexchange-category | |||
Property / math-stackexchange-category: proof-explanation / rank | |||
Normal rank | |||
Property / arqmath formula id | |||
q_22 | |||
Property / arqmath formula id: q_22 / rank | |||
Normal rank | |||
Property / post type | |||
Property / post type: Question / rank | |||
Normal rank | |||
Property / math stackexcange post id | |||
Property / math stackexcange post id: 3083227 / rank | |||
Normal rank | |||
Property / relevant answers | |||
Property / relevant answers: 3083261 / rank | |||
Normal rank | |||
Property / relevant answers: 3083261 / qualifier | |||
Defining formula: \sum_{k=0}^{n} k\binom{n}{k}= \sum_{k=1}^{n-1} k\binom{n}{k}+n=\sum_{k=1}^{n-1} n\binom{n-1}{k-1}+n=n\sum_{k=0}^{n-1} \binom{n-1}{k}=n2^{n-1} |
Latest revision as of 10:17, 29 April 2020
No description defined
Language | Label | Description | Also known as |
---|---|---|---|
English | No label defined |
No description defined |
Statements
B.4
0 references
q_22
0 references