Q1163 (Q1163): Difference between revisions

From ArqMath20
Jump to navigation Jump to search
Scharpf (talk | contribs)
Created claim: relevant answers (P14): 659332
Scharpf (talk | contribs)
Created claim: formatter url (P4): \Phi(q) = \begin{cases}0 & \quad q = 0 \\1 & \quad q = 1 \\-1 & \quad q = -1 \\2^m (2n + 1) & \quad q =\frac{m}{n} \text{ simplest form } \\- 2^m(2n + 1) & \quad q = - \frac{m}{n} \text{ simplest form}\end{cases}
 
Property / formatter url
 
\Phi(q) = \begin{cases}0 & \quad q = 0 \\1 & \quad q = 1 \\-1 & \quad q = -1 \\2^m (2n + 1) & \quad q =\frac{m}{n} \text{ simplest form } \\- 2^m(2n + 1) & \quad q = - \frac{m}{n} \text{ simplest form}\end{cases}
Property / formatter url: \Phi(q) = \begin{cases}0 & \quad q = 0 \\1 & \quad q = 1 \\-1 & \quad q = -1 \\2^m (2n + 1) & \quad q =\frac{m}{n} \text{ simplest form } \\- 2^m(2n + 1) & \quad q = - \frac{m}{n} \text{ simplest form}\end{cases} / rank
 
Normal rank

Latest revision as of 13:30, 20 May 2020

No description defined
Language Label Description Also known as
English
No label defined
No description defined

    Statements

    B.62
    0 references
    q_561
    0 references
    0 references
    0 references
    \Phi(q) = \begin{cases}0 & \quad q = 0 \\1 & \quad q = 1 \\-1 & \quad q = -1 \\2^m (2n + 1) & \quad q =\frac{m}{n} \text{ simplest form } \\- 2^m(2n + 1) & \quad q = - \frac{m}{n} \text{ simplest form}\end{cases}
    0 references