Q1163 (Q1163): Difference between revisions
Jump to navigation
Jump to search
Created claim: relevant answers (P14): 659332 |
Created claim: formatter url (P4): \Phi(q) = \begin{cases}0 & \quad q = 0 \\1 & \quad q = 1 \\-1 & \quad q = -1 \\2^m (2n + 1) & \quad q =\frac{m}{n} \text{ simplest form } \\- 2^m(2n + 1) & \quad q = - \frac{m}{n} \text{ simplest form}\end{cases} |
||
Property / formatter url | |||
\Phi(q) = \begin{cases}0 & \quad q = 0 \\1 & \quad q = 1 \\-1 & \quad q = -1 \\2^m (2n + 1) & \quad q =\frac{m}{n} \text{ simplest form } \\- 2^m(2n + 1) & \quad q = - \frac{m}{n} \text{ simplest form}\end{cases} | |||
Property / formatter url: \Phi(q) = \begin{cases}0 & \quad q = 0 \\1 & \quad q = 1 \\-1 & \quad q = -1 \\2^m (2n + 1) & \quad q =\frac{m}{n} \text{ simplest form } \\- 2^m(2n + 1) & \quad q = - \frac{m}{n} \text{ simplest form}\end{cases} / rank | |||
Normal rank |
Latest revision as of 13:30, 20 May 2020
No description defined
Language | Label | Description | Also known as |
---|---|---|---|
English | No label defined |
No description defined |
Statements
B.62
0 references
q_561
0 references
\Phi(q) = \begin{cases}0 & \quad q = 0 \\1 & \quad q = 1 \\-1 & \quad q = -1 \\2^m (2n + 1) & \quad q =\frac{m}{n} \text{ simplest form } \\- 2^m(2n + 1) & \quad q = - \frac{m}{n} \text{ simplest form}\end{cases}
0 references