Formula q_469 (Q325): Difference between revisions
Jump to navigation
Jump to search
Created a new Item |
Created claim: Defining formula (P1): \binom{n}{n}+\binom{n+1}{1}\frac{1}{2}+\binom{n+2}{2}\frac{1}{2^2}+\binom{n+3}{3}\frac{1}{2^3}+\cdots +\binom{n+n}{n}\frac{1}{2^n} |
||
(One intermediate revision by the same user not shown) | |||
Property / arqmath formula id | |||
q_469 | |||
Property / arqmath formula id: q_469 / rank | |||
Normal rank | |||
Property / Defining formula | |||
\binom{n}{n}+\binom{n+1}{1}\frac{1}{2}+\binom{n+2}{2}\frac{1}{2^2}+\binom{n+3}{3}\frac{1}{2^3}+\cdots +\binom{n+n}{n}\frac{1}{2^n} | |||
Property / Defining formula: / rank | |||
Normal rank |
Latest revision as of 13:06, 20 April 2020
No description defined
Language | Label | Description | Also known as |
---|---|---|---|
English | Formula q_469 |
No description defined |
Statements
q_469
0 references
0 references