Q1146 (Q1146): Difference between revisions
Jump to navigation
Jump to search
Created a new Item |
Created claim: formatter url (P4): \int_0^\infty\frac{|\sin(x)|}x~\mathrm dx&=\sum_{n=0}^\infty\int_{n\pi}^{(n+1)\pi}\frac{|\sin(x)|}x~\mathrm dx\\&=\sum_{n=0}^\infty\int_0^\pi\frac{\sin(x)}{x+n\pi}~\mathrm dx\\&=\sum_{n=0}^\infty\left[\frac1{(n+1)\pi}+\frac1{n\pi}-\int_0^\pi\frac{\cos(x)}{(x+n\pi)^2}~\mathrm dx\right]\tag{ibp} |
||
(3 intermediate revisions by 2 users not shown) | |||
Property / math stackexcange post id | |||
Property / math stackexcange post id: 3229015 / rank | |||
Normal rank | |||
Property / relevant answers | |||
Property / relevant answers: 3229032 / rank | |||
Normal rank | |||
Property / relevant answers: 3229032 / qualifier | |||
Defining formula: see formatterurl | |||
Property / formatter url | |||
\int_0^\infty\frac{|\sin(x)|}x~\mathrm dx&=\sum_{n=0}^\infty\int_{n\pi}^{(n+1)\pi}\frac{|\sin(x)|}x~\mathrm dx\\&=\sum_{n=0}^\infty\int_0^\pi\frac{\sin(x)}{x+n\pi}~\mathrm dx\\&=\sum_{n=0}^\infty\left[\frac1{(n+1)\pi}+\frac1{n\pi}-\int_0^\pi\frac{\cos(x)}{(x+n\pi)^2}~\mathrm dx\right]\tag{ibp} | |||
Property / formatter url: \int_0^\infty\frac{|\sin(x)|}x~\mathrm dx&=\sum_{n=0}^\infty\int_{n\pi}^{(n+1)\pi}\frac{|\sin(x)|}x~\mathrm dx\\&=\sum_{n=0}^\infty\int_0^\pi\frac{\sin(x)}{x+n\pi}~\mathrm dx\\&=\sum_{n=0}^\infty\left[\frac1{(n+1)\pi}+\frac1{n\pi}-\int_0^\pi\frac{\cos(x)}{(x+n\pi)^2}~\mathrm dx\right]\tag{ibp} / rank | |||
Normal rank |
Latest revision as of 20:59, 19 May 2020
No description defined
Language | Label | Description | Also known as |
---|---|---|---|
English | No label defined |
No description defined |
Statements
B.26
0 references
q_205
0 references
\int_0^\infty\frac{|\sin(x)|}x~\mathrm dx&=\sum_{n=0}^\infty\int_{n\pi}^{(n+1)\pi}\frac{|\sin(x)|}x~\mathrm dx\\&=\sum_{n=0}^\infty\int_0^\pi\frac{\sin(x)}{x+n\pi}~\mathrm dx\\&=\sum_{n=0}^\infty\left[\frac1{(n+1)\pi}+\frac1{n\pi}-\int_0^\pi\frac{\cos(x)}{(x+n\pi)^2}~\mathrm dx\right]\tag{ibp}
0 references