Q1146 (Q1146): Difference between revisions

From ArqMath20
Jump to navigation Jump to search
SchuBot (talk | contribs)
Created a new Item
 
Scharpf (talk | contribs)
Created claim: formatter url (P4): \int_0^\infty\frac{|\sin(x)|}x~\mathrm dx&=\sum_{n=0}^\infty\int_{n\pi}^{(n+1)\pi}\frac{|\sin(x)|}x~\mathrm dx\\&=\sum_{n=0}^\infty\int_0^\pi\frac{\sin(x)}{x+n\pi}~\mathrm dx\\&=\sum_{n=0}^\infty\left[\frac1{(n+1)\pi}+\frac1{n\pi}-\int_0^\pi\frac{\cos(x)}{(x+n\pi)^2}~\mathrm dx\right]\tag{ibp}
 
(3 intermediate revisions by 2 users not shown)
Property / math stackexcange post id
 
Property / math stackexcange post id: 3229015 / rank
 
Normal rank
Property / relevant answers
 
Property / relevant answers: 3229032 / rank
 
Normal rank
Property / relevant answers: 3229032 / qualifier
 
Defining formula:

see formatterurl
Property / formatter url
 
\int_0^\infty\frac{|\sin(x)|}x~\mathrm dx&=\sum_{n=0}^\infty\int_{n\pi}^{(n+1)\pi}\frac{|\sin(x)|}x~\mathrm dx\\&=\sum_{n=0}^\infty\int_0^\pi\frac{\sin(x)}{x+n\pi}~\mathrm dx\\&=\sum_{n=0}^\infty\left[\frac1{(n+1)\pi}+\frac1{n\pi}-\int_0^\pi\frac{\cos(x)}{(x+n\pi)^2}~\mathrm dx\right]\tag{ibp}
Property / formatter url: \int_0^\infty\frac{|\sin(x)|}x~\mathrm dx&=\sum_{n=0}^\infty\int_{n\pi}^{(n+1)\pi}\frac{|\sin(x)|}x~\mathrm dx\\&=\sum_{n=0}^\infty\int_0^\pi\frac{\sin(x)}{x+n\pi}~\mathrm dx\\&=\sum_{n=0}^\infty\left[\frac1{(n+1)\pi}+\frac1{n\pi}-\int_0^\pi\frac{\cos(x)}{(x+n\pi)^2}~\mathrm dx\right]\tag{ibp} / rank
 
Normal rank

Latest revision as of 20:59, 19 May 2020

No description defined
Language Label Description Also known as
English
No label defined
No description defined

    Statements

    0 references
    0 references
    0 references
    0 references
    0 references
    B.26
    0 references
    q_205
    0 references
    0 references
    0 references
    \int_0^\infty\frac{|\sin(x)|}x~\mathrm dx&=\sum_{n=0}^\infty\int_{n\pi}^{(n+1)\pi}\frac{|\sin(x)|}x~\mathrm dx\\&=\sum_{n=0}^\infty\int_0^\pi\frac{\sin(x)}{x+n\pi}~\mathrm dx\\&=\sum_{n=0}^\infty\left[\frac1{(n+1)\pi}+\frac1{n\pi}-\int_0^\pi\frac{\cos(x)}{(x+n\pi)^2}~\mathrm dx\right]\tag{ibp}
    0 references