Q1128 (Q1128): Difference between revisions
Jump to navigation
Jump to search
Created claim: relevant answers (P14): 3226459 |
Changed claim: relevant answers (P14): 3226459 |
||
Property / relevant answers: 3226459 / qualifier | |||
Defining formula: r^{\frac1p}\left(\cos\left(\frac{\theta+2\pi n}p\right)+i\sin\left(\frac{\theta+2\pi n}p\right)\right) | |||
Property / relevant answers: 3226459 / qualifier | |||
r(\cos\theta + i\sin\theta)$ has $p$ distinct $p$th roots. They are found by $$r^{\frac1p}\left(\cos\left(\frac{\theta+2\pi n}p\right)+i\sin\left(\frac{\theta+2\pi n}p\right)\right) |
Latest revision as of 23:33, 16 May 2020
No description defined
Language | Label | Description | Also known as |
---|---|---|---|
English | No label defined |
No description defined |
Statements
B.24
0 references
q_172
0 references