Formula q_206 (Q153): Difference between revisions
Jump to navigation
Jump to search
Created a new Item |
Created claim: Defining formula (P1): \int_0^\infty\frac{\sin x}{x}dx=\lim_{x\to \infty} \sum_{n=0}^\infty (-1)^n\frac{x^{(2n+1)}}{(2n+1) \times (2n+1)!} |
||
(One intermediate revision by the same user not shown) | |||
Property / arqmath formula id | |||
q_206 | |||
Property / arqmath formula id: q_206 / rank | |||
Normal rank | |||
Property / Defining formula | |||
\int_0^\infty\frac{\sin x}{x}dx=\lim_{x\to \infty} \sum_{n=0}^\infty (-1)^n\frac{x^{(2n+1)}}{(2n+1) \times (2n+1)!} | |||
Property / Defining formula: / rank | |||
Normal rank |
Latest revision as of 12:58, 20 April 2020
No description defined
Language | Label | Description | Also known as |
---|---|---|---|
English | Formula q_206 |
No description defined |
Statements
q_206
0 references
0 references