Formula q_366 (Q253): Difference between revisions
Jump to navigation
Jump to search
Created a new Item |
Created claim: Defining formula (P1): \begin{vmatrix} (1)\sin(x) & (1)\sin(2x) & (1)\sin(3x) & ... & (1)\sin(nx) \\ (1)\cos(x) & (2)\cos(2x) & (3)\cos(3x) & ... & (n)\cos(nx) \\ -(1)^2\sin(x) & -(2)^2\sin(2x) & -(3)^2\sin(3x) & ... & -(n)^2\sin(nx) \\ -(1)^3\cos(x) & -(2)^3\cos(2x) & -(3)^3\cos(3x) & ... & -(n)^3\cos(nx) \\ \end{vmatrix} |
||
(One intermediate revision by the same user not shown) | |||
Property / arqmath formula id | |||
q_366 | |||
Property / arqmath formula id: q_366 / rank | |||
Normal rank | |||
Property / Defining formula | |||
\begin{vmatrix} (1)\sin(x) & (1)\sin(2x) & (1)\sin(3x) & ... & (1)\sin(nx) \\ (1)\cos(x) & (2)\cos(2x) & (3)\cos(3x) & ... & (n)\cos(nx) \\ -(1)^2\sin(x) & -(2)^2\sin(2x) & -(3)^2\sin(3x) & ... & -(n)^2\sin(nx) \\ -(1)^3\cos(x) & -(2)^3\cos(2x) & -(3)^3\cos(3x) & ... & -(n)^3\cos(nx) \\ \end{vmatrix} | |||
Property / Defining formula: / rank | |||
Normal rank |
Latest revision as of 13:03, 20 April 2020
No description defined
Language | Label | Description | Also known as |
---|---|---|---|
English | Formula q_366 |
No description defined |
Statements
q_366
0 references
0 references