Formula q_850 (Q657): Difference between revisions
Jump to navigation
Jump to search
Created claim: arqmath formula id (P8): q_850 |
Created claim: Defining formula (P1): \sum_{k=0}^{n}k\cdot \left(\begin{array}{l}{n}\\{k}\end{array}\right)\leq \sum_{k=0}^{n}k\cdot \left(\begin{array}{l}{n}\\{\lfloor \frac{n}{2}\rfloor}\end{array}\right)\leq \frac{n\cdot(n+1)}{2}\cdot \left(\begin{array}{l}{n}\\{\lfloor \frac{n}{2}\rfloor}\end{array}\right)\leq n(n+1)! \leq nn^n \leq n^{n+1} |
||
Property / Defining formula | |||
\sum_{k=0}^{n}k\cdot \left(\begin{array}{l}{n}\\{k}\end{array}\right)\leq \sum_{k=0}^{n}k\cdot \left(\begin{array}{l}{n}\\{\lfloor \frac{n}{2}\rfloor}\end{array}\right)\leq \frac{n\cdot(n+1)}{2}\cdot \left(\begin{array}{l}{n}\\{\lfloor \frac{n}{2}\rfloor}\end{array}\right)\leq n(n+1)! \leq nn^n \leq n^{n+1} | |||
Property / Defining formula: / rank | |||
Normal rank |
Latest revision as of 13:24, 20 April 2020
No description defined
Language | Label | Description | Also known as |
---|---|---|---|
English | Formula q_850 |
No description defined |
Statements
q_850
0 references
0 references